This is a repository copy of Development of atraumatic, non-slip, force-constrained laparoscopic forceps.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/87499/

Version: Accepted Version

Proceedings Paper:

https://doi.org/10.1002/bjs.9822

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
DEVELOPMENT OF ATRAUMATIC, NON-SLIP, FORCE-CONSTRAINED LAPAROSCOPIC FORCEPS.

GW Taylor, PR Culmer, L Hunter, A Bell, J Barrie, A Neville, DG Jayne.

Introduction
Surgical manipulation leads to an intestinal inflammatory response that contributes to post-operative ileus, increases the risk of complications and delays discharge. There is an immediate need for totally atraumatic instruments.

Study design
We have manufactured polymer micropillar arrays with custom geometry and hydrophilicity. We applied this novel adhesive surface to the jaws of standard laparoscopic forceps and integrated force and displacement sensors into the handles to enable calculation of the force applied to tissue.

Parametric studies will investigate the influence of key factors (geometry, hydrophilicity, retraction force, grasping force) on the grip and retraction performance of the modified forceps. Ex-vivo porcine tissue will be used. After mechanical testing, tissue damage will be assessed histologically to define ‘safe’ limits.

Pilot data
An adhesive force of 70mNcm-2 was achieved with micropillars applied to peritoneum. The surface provided resistance to lateral traction with a high friction co-efficient of 1.5. A capillary mechanism is proposed, as hydrophobic surfaces were not adhesive.

Recorded data from the instrumented forceps demonstrate accurate measurement of the tissue-jaw interaction forces and display the visco-elastic properties of tissue. A pronounced relaxation phase seen during extended holds may be correlated with tissue trauma.

Forward plan
In-vivo animal studies will allow tissue stress to be quantitatively correlated with histochemical changes, defining the inflammatory response associated with surgical manipulation. This data will inform the force constraints of a working prototype. Limiting tissue stress in this way can potentially eliminate the intestinal inflammatory response and further enhance the benefits of laparoscopic surgery.